

A BIO-DERIVED POWDER WITH EXCEPTIONALLY HIGH DUCTILITY AND IMPACT STRENGTH

A cost-efficient thermoplastic material used for creating functional and final parts across a diverse range of industries. PA11 offers impressive mechanical properties making it an ideal material for use in high load and high stress applications.

WHY CHOOSE PA11?

- High elongation at break
- High impact resistance
- Excellent resistance to chemicals, especially hydrocarbons, aldehydes, ketones, mineral bases and salts, alcohols, fuels, detergents, oils and fats
- Thermoplastic material delivering optimal mechanical properties
- Impact resistance and ductility
- Designed for production of final parts for a variety of industries
- Reliably produces functional prototypes and final parts with fine detail and dimensional accuracy

HOW DOES PA11 MINIMISE WASTE?

- 100 percent renewable raw material from vegetable castor oil for reduced environmental impact
- Reuse surplus powder batch after batch to minimise waste
- Consistent performance with up to 70 percent surplus powder reusability
- Non-hazardous component materials

HOW DOES MULTI JET FUSION TECHNOLOGY WORK?

- HP Multi Jet Fusion (MJF) is a powder-bed technology that is faster than comparable single point processes
- MJF technology uses a liquid fusing agent to create layers of PA11
- A detailing agent is used to create fine detail and to provide a smooth surface
- The part is created layer by layer using PA11 powder, liquid agents and heat
- The finished parts are cooled and cleaned

TECHNICAL SPECIFICATIONS

	MEASUREMENT	VALUE	METHOD	
	POWDER MELTING POINT (DSC)	202°C	ASTM D3418	
	PARTICLE SIZE	54 µm	ASTM D3451	
	BULK DENSITY OF POWDER	0.48 g / cm ³	ASTM D1895	
	DENSITY OF PARTS	1.05 g / cm ³	ASTM D792	
	RELATIVE DENSITY	99.99% ^A	-	
	TYPICAL PART ACCURACY	IT GRADE 13	ISO 286	
GENERAL PROPERTIES	RECOMMENDED WALL THICKNESS	1 - 20mm		
	MINIMUM HOLE DIAMETER	1mm	HP DESIGN GUIDELINES	
	MINIMUM SHAFT DIAMETER	10mm		
	MINIMUM SLIT BETWEEN WALLS OR EMBOSSED DETAILS 0.5mm		MJF PA11	
	MINIMUM PRINTABLE FEATURES	0.1mm		
	SURFACE ROUGHNESS λ_s = 8 μ m, GAUSS FILTER	R _a ~ 19 - 6	ISO 997	
	COLOUR OF PARTS	BLACK, GREY	-	

	MEASUREMENT	VALUE		METHOD
		XY	Z	METHOD
MECHANICAL PROPERTIES ⁸	TENSILE STRENGTH ^c , MAX LOAD	54 MPa	54 MPa	ASTM D638
	TENSILE MODULUS ^D	1700 MPa	1800 MPa	
	ELONGATION AT YIELD ^E	25 %	20 %	
	ELONGATION AT BREAK ^F	40 %	25 %	
	FLEXURAL STRENGTH (@ 5%)	70 MPa	70 MPa	ASTM D790
	FLEXURAL MODULUS	1800 MPa	1800 MPa	
	IMPACT STRENGTH ^G (@ 3.2 mm, 23° C)(kJ/m ²)	7.0	4.5	ASTM D256 Test Method A
	SHORE HARDNESS (D)	80	80	ASTM D2240

	MEASUREMENT	VALUE		METHOD
THERMAL PROPERTIES		XY	Z	
	HEAT DEFLECTION TEMPERATURE ^H (@ 0.45 MPa, 66 psi)	185°C	185°C	ASTM D648 Test Method A
	HEAT DEFLECTION TEMPERATURE ^H (@ 1.82 MPa, 264 psi)	54°C	54°C	

	MEASUREMENT	
CERTIFICATIONS	USP CLASS I-VI AND US FDA GUIDANCE FOR INTACT SKIN SURFACE DEVICES ^I , RoHS, REACH, PAHs, STATEMENT OF COMPOSITION FOR TOY APPLICATIONS	

For detailed datasheet refer https://www.hp.com/us-en/printers/3d-printers/materials.html

References: A. Research article: A Comprehensive Investigation on 3D Printing of Polyamide 11 and Thermoplastic Polyurethane via Multi Jet Fusion (mdp.com) B. The following technical information should be considered representative of averages or typical values and should not be used for specification purposes. These values are with FW TATDAC_15_18_11.69 and have been obtained from a sample of specimens printed in plots with 6% packing density. Separation between specimers in the plot was 10 mm. Modulus has been calculated using the slope of the regression line between 0.05% and 0.25% strain measured with an automatic extensometer during the entire test. Cross-section dimension obtained using a micrometer with round ends. Conditioning according to ASTM D618 Procedure test. Cross-section dimension obtained using a micrometer with round ends. Conditioning according to ASTM D618 Procedure test. Cross-section dimension obtained using a micrometer with round ends. Conditioning according to ASTM D618 Procedure a test rate of 10 mm/min, specimens type V. Tensile strength is the capacity of a material to withistand tension loads. D. Tensile modulus typical variation (95% of parts) falls within the 1500 to 2200 MP ange. Test results realised under ASTM D790 Procedure B at test rate of 13.55 mm/min. Tensile modulus (also Young You a cuterial to withistand tension loads. D. Tensile modulus typical variation (95% of parts) falls within the 1500 to 2200 MP ange. Test results realised under ASTM D790 Procedure B at test rate of a solid material. It defines the relationship between stress and strain in a material in the linear elasticity regime. E. Elongation measures the deformed amount versus the original part length. F. Hongstion at break is the deformed amount versus the original part length. F. Hongstion at break is the deformed amount versus the original part length. H. Heat deflection temperature is defined as the temperature parts and radius tredificts a specified distance under a long at the stest d

To receive baseline costs for rapid prototyping, upload your design files using the online portal at www.bowman3D.com

To discuss production volume 3D printing, speak to our specialist team:

